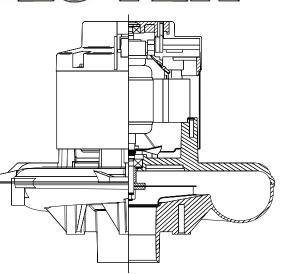


AMETEK LAMB ELECTRIC



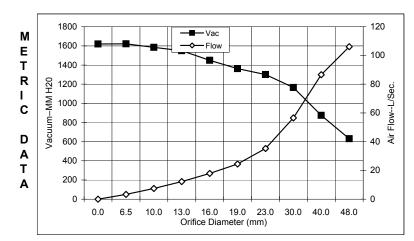
DESCRIPTION

- One stage
- 230 volts
- 9.0" / 229 mm diameter
- Dual ball bearings
- Tangential discharge
- All aluminum die cast housings used in motor construction

DESIGN APPLICATION

- Equipment operating in environments requiring separation of working air from motor ventilating air
- Designed to handle clean, dry, filtered air only

Model: 119896-00


SPECIAL FEATURES

- Suitable for 240v AC operation, 50/60 Hz
- UL component recognized
- Provision for grounding
- 10 mm shaft and bearing system
- Flat fan system
- Aluminum fan end bracket designed to dampen vibration and improve durability

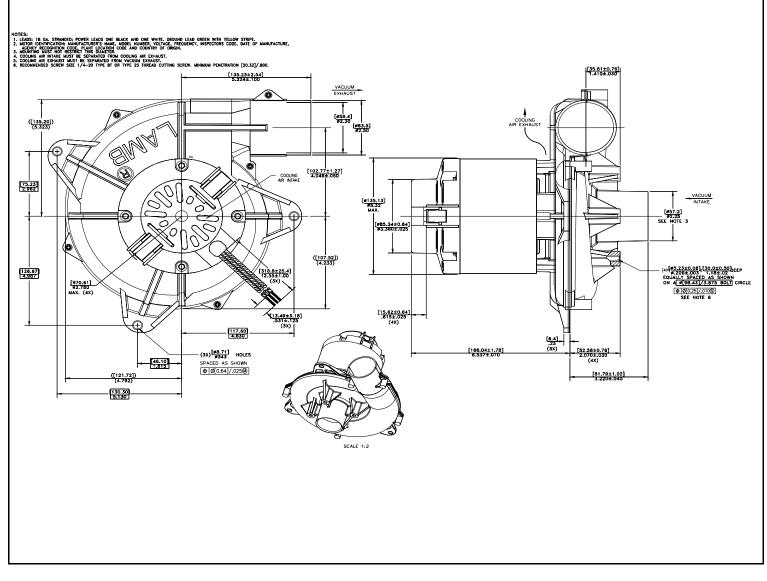
The FLO-TEK 700 Series is also available in a brushless (Switched Reluctance) version, designed for 5,000 life and available in either "highflow" or "high seal" performance designs.

ΤY	PIC	AL	MO	TOR	R PE	RFO	RM	ANC	Е.*				(At 23	30 vol	ts, 60	Hz, test d	lata
		70 -							_							250	
		60 -						┣━ Va ┝━ Flo						ø	P	200	
Α	H2O	50 -	_										ø		-	- 200	
S	ches	40 -	_												-	_ 150	
Т М	VacuumInches H2O	30 -	_							~	0				-	Air Flow-	
D	Vacu	20 -						5	ø								
Α		10 -	_			0	~									50	
T		0 -	~	0	0					ļ					_	- 0	
Α			0.000	0.250	0.375	0.500	10 ^{0.625}	092.0 fice D	s28.0 iamete	er (Inc	ches)	1.250	1.500	1.750	2.000		

ta.	a is corrected to standard conditions of 29.92 Hg, 68° F.)									
	Orifice	Amps	Watts	RPM	Vac	Flow	Air			
	(Inches)		(In)		(In.H2O)	(CFM)	Watts			
	2.000	7.6	1640	20970	21.7	237.5	606			
	1.750	7.5	1632	20970	28.9	208.7	710			
	1.500	7.4	1596	21160	36.9	172.5	748			
	1.250	6.9	1503	21720	44.2	131.6	684			
	1.125	6.6	1443	22140	47.3	110.1	613			
	1.000	6.3	1381	22540	50.4	89.9	533			
	0.875	6.0	1313	23030	51.5	69.8	422			
	0.750	5.7	1247	23550	53.5	52.2	329			
	0.625	5.3	1173	24150	57.2	37.4	251			
	0.500	5.0	1100	24700	61.4	24.8	179			
	0.375	4.8	1050	25350	62.6	14.3	105			
	0.250	4.5	1002	25720	63.9	6.8	51			
	0.000	4.4	968	26100	63.8	0.0	0			

Orifice	Amps	Watts	RPM	Vac	Flow	Air
(mm)		(In)		(mm H2O)	(L/Sec)	Watts
48.0	7.6	1636	20970	632	106.1	652
40.0	7.4	1607	21103	876	86.6	737
30.0	6.8	1470	21951	1166	56.5	645
23.0	6.1	1330	22908	1301	35.3	450
19.0	5.7	1246	23562	1362	24.5	327
16.0	5.4	1176	24126	1449	18.0	254
13.0	5.0	1107	24645	1549	12.3	186
10.0	4.8	1058	25253	1585	7.5	116
6.5	4.5	1004	25702	1621	3.4	54
0.0	4.4	968	26100	1620	0.0	0

Note: Metric performance data is calculated from the ASTM data above.


 * Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variances.

 Test Specs: TBD
 Minimum Sealed Vacuum: TBD
 ORIFICE: 7/8"
 Minimum Vacuum: TBD
 Maximum Watts: TBD

PRODUCT BULLETIN

DIMENSIONS

Manufactured under Patent nos. US5789893, TW81993, SG38957, ZA96/2766, US5760519, EP0702448B1, ZA95/7123 under license from Switched Reluctance Drives Ltd. Other US and foreign patents pending. Copyright code 1998. All rights reserved.

IMPORTANT NOTES: Pictorial and dimensional data are subject to change without notice. Contact factory for current revision levels.

WARNING - When using AMETEK/Lamb Electric bypass motors in machines that come in contact with foam, liquid (including water) of other foreign substances, the machine must be designed and constructed to prevent those substances from reaching the fan system, motor housing and electrical components. Lamb vacuum motors other than hazardous duty models should not be applied in machines that come in contact with dry chemicals or other volatile materials. Failure to observe these precautions could cause flashing (depending on volatility) or electrical shock which could result in property damage and severe bodily injury, including death in extreme cases. All applications incorporating Lamb motors should be submitted to appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Issued: June , 2006