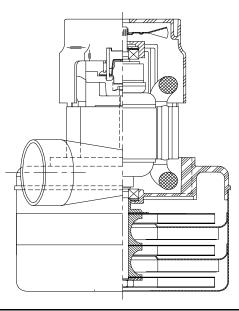


АМЕТЕК

LAMB ELECTRIC

Model: 116698-13*


DESCRIPTION

- Three stage
- 120 volts
- 5.7"/145 mm diameter
- Double ball bearings
- Single speed
- Tangential bypass discharge
- Thermoset fan end bracket
- Aluminum commutator bracket

DESIGN APPLICATION

- Equipment operating in environments requiring separation of working air from motor ventilating air

- Designed to handle clean, dry, filtered air only

SPECIAL FEATURES

- Suitable for 120 volt AC operation, 50/60 Hz
- UL recognized, category PRGY2 (E47185)
- CSA certified, class 1611 01 (LR31393)
- Provision for grounding
- Skeleton-frame design

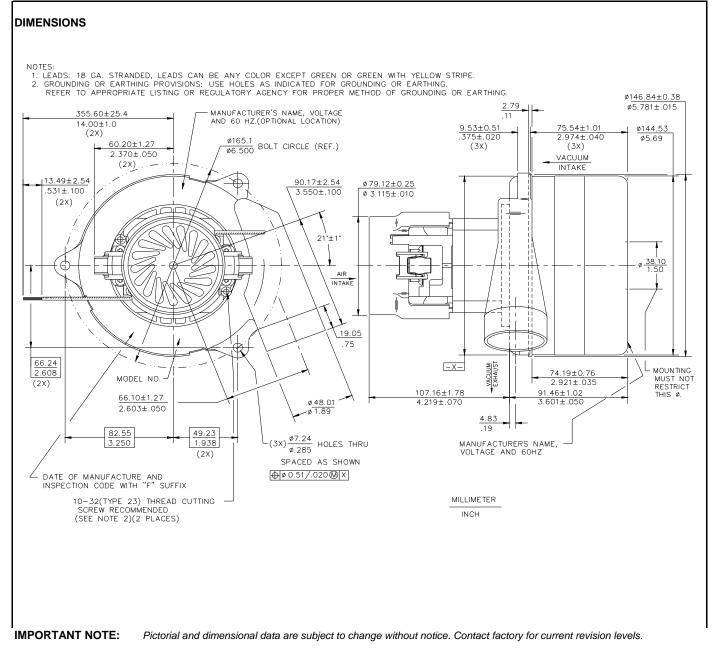
- The Lamb Electric vacuum motor line offers a wide range of performance levels to meet design needs.

- Same as 116565-13 except Reverse Flow cooling fan.

*Model 116565-13 features patented air seal air seal bearing construction, U.S. Patent #4,088,424 and epoxy painted fan case

YPI	CAL M	OTOR	PER	FOF	RMA	NC	E.*				(At	120	volt	ts,	60Hz, te	est data is	corrected	to stand	lard condi	tions of 29	.92 Hg, 6	68°F.)
	140													Т	120	Orifice (Inches)	Amps	Watts (In)	RPM	Vac (In.H2O)	Flow (CFM)	Air Watts
	120 -						Vac Flow								100	2.000	10.4	1227	17500	3.4	99.0	39
													100	1.750	10.5	1233	17500	5.7	98.0	65		
	100 -		\leq						×	~				_	80	1.500	10.6	1240	17500	9.9	95.0	110
T	Inches H2O							×								1.250	10.6	1246	17400	18.0	89.0	187
	Inche														60 ^{MEO}	1.125	10.6	1252	17300	24.8	84.0	244
						×								_	Flow-	1.000	10.7	1258	17300	34.0	78.0	310
	- 00 -				×									-	40 ∛₹	0.875	10.6	1250	17400	44.5	68.0	356
	40 -			×												0.750	10.3	1212	17700	55.9	56.0	368
	20 -		*	[_	20	0.625	9.7	1147	18300	68.6	43.0	347
		×														0.500	9.1	1071	19200	79.6	30.0	278
	0 -			-		-		-		-	_	-			0	0.375	8.4	988	20300	91.1	18.0	191
		0.000	0.375	0.500	0.625	0.750	0.875	000.	.125	.250	.500	1.750	2.000			0.250	7.4	886	21400	102.8	7.0	102
		O O O O O O O C								-	-	-	2			0.000	6.7	796	22200	117.4	0.0	0
	3500							► Va	20			•	-		50 45	Orifice	Amps	Watts	RPM	Vac (mm H2O)	Flow	Air Watt
	3000				-	-		FI	_	-	\checkmark	~		_		(mm) 48.0	10.4	(In) 1230	17500	(mm H2O) 112	(L/Sec) 46.5	50
	2500									\swarrow					40	40.0	10.4	1230	17500	219	46.5	97

2500 35 R Vacuum--MM H20 30 v--L/Sec. 2000 L 25 С Air Flow 1500 20 15 1000 D Α 10 500 т 5 Α 0 0 0.0 6.5 10.0 13.0 23.0 16.0 19.0 30.0 40.0 48.0 Orifice Diameter--mm


Orifice	Amps	Watts	RPM	Vac	Flow	Air
(mm)		(In)		(mm H2O)	(L/Sec)	Watts
48.0	10.4	1230	17500	112	46.5	50
40.0	10.6	1238	17500	219	45.3	97
30.0	10.6	1249	17345	552	40.7	218
23.0	10.6	1252	17375	1064	33.3	345
19.0	10.3	1211	17712	1426	26.3	368
16.0	9.7	1150	18276	1730	20.5	348
13.0	9.2	1079	19110	1994	14.8	285
10.0	8.5	1000	20135	2270	9.3	204
6.5	7.5	891	21345	2596	3.6	106
0.0	6.7	796	22200	2982	0.0	0

Note: Metric performance data is calculated from the ASTM data above.

* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due+A43 to normal manufacturing variati

Test Specs: 120 volts Minimum Sealed Vacuu	n: 112.0" OR	FICE: 7/8 "	Minimum Vacuum: 40.	0" Maximum Watts:	1425	1
--	---------------------	-------------	---------------------	-------------------	------	---

PRODUCT BULLETIN

WARNING - When using AMETEK Lamb Electric bypass motors in machines that come in contact with foam, liquid (including water), or other foreign substances, the machine must be designed and constructed to prevent those substances from reaching the fan system, motor housing, and electrical components. Lamb Electric vacuum motors other than hazardous duty models should not be applied in machines that come in contact with dry chemicals or other volatile materials. Failure to observe these precautions could cause flashing (depending on volatility) or electrical shock which could result in property damage and severe bodily injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Revised: Janaury, 2004