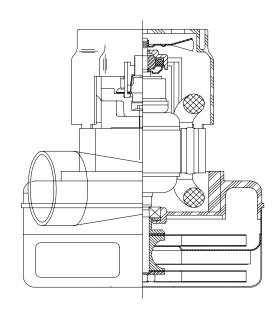


LAMB ELECTRIC

DESCRIPTION


- Two stage
- 120 volts
- 5.7"/145 mm diameter
- Ball / Sleeve ball bearing system
- Single speed
- Tangential bypass discharge

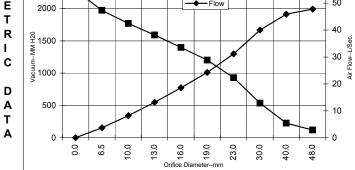
POW

- Plastic fan end bracket
- Aluminum commutator bracket

DESIGN APPLICATION

- Equipment operating in environments requiring separation of working air from motor ventilating air
- Designed to handle clean, dry, filtered air only

Product Bulletin


116210-50 Model: 116210-85*

SPECIAL FEATURES

- Suitable for 120 volt AC operation, 50/60 Hz
- UL recognized, category PRGY2 (E47185)
- CSA certified, class 1611 01 (LR31393)
- Provision for grounding
- Skeleton-frame design
- Epoxy painted fan case
- The Lamb Electric vacuum motor line offers a wide range of performance levels to meet design needs

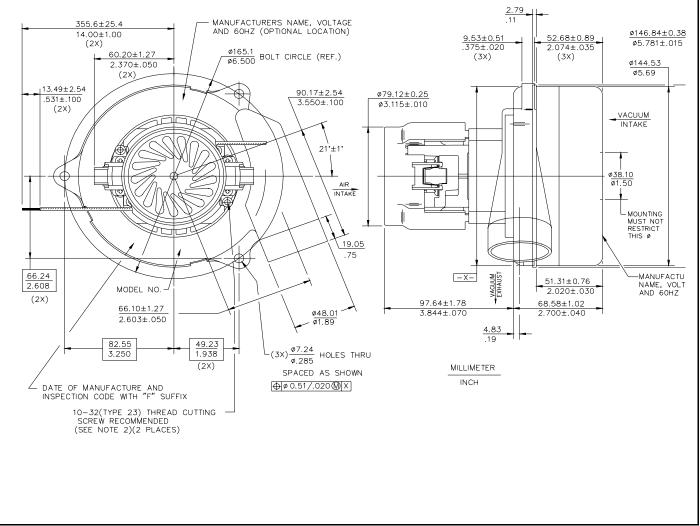
*Model 116210-85 features 1 7/8" inlet tube

TYF	PICAL	MO	ΓOR	PEF	RFO	RM/	ANC	E.*				(At ′	120	volts	s, 60Hz, t	tes	st data is	corrected	l to stand	lard condi	tions of 29	.92 Hg, 6	8° F.)
	100	T													120		Orifice (Inches)	Amps	Watts (In)	RPM	Vac (In.H2O)	Flow (CFM)	Air Watts
	90	╞╼╲						₩							100	Ī	2.000	8.0	930	18252	3.7	102.6	44
A S T M D A T A	80	-						• •					-		- 100		1.750	8.1	935	18191	5.9	99.7	70
	o 70	-								*	×				- 80		1.500	8.1	941	18121	10.2	96.2	116
	-107 Hold Hold Hold Hold Hold Hold Hold Hold	-							×	<u> </u>							1.250	8.2	949	18034	17.9	88.3	186
	- 					ľ		×							₩ ED 60		1.125	8.2	949	18054	23.6	82.0	227
								Flow-		1.000	8.1	941	18135	30.5	73.8	265							
	Vac					•									- 40 [≒] ₹		0.875	8.0	923	18366	38.6	63.5	288
	30				~												0.750	7.6	887	18743	47.1	51.6	285
	20			~	~										- 20		0.625	7.2	837	19429	55.3	38.8	252
	10	-		~											-		0.500	6.6	775	20281	63.4	26.6	198
	0	•					_				_		-		+ 0		0.375	6.0	715	21223	70.7	15.8	131
		0.000	0.250	0.375	0.500	0.625	0.750	.875	000	.125	.250	.500	.750	2.000			0.250	5.5	660	22227	78.0	7.4	68
		0	0	0	0			o iameter	-	-	-	-	-	2			0.000	5.1	613	23134	89.8	0.0	0
	2500								— Vac	;					60	[Orifice (mm)	Amps	Watts (In)	RPM	Vac (mm H2O)	Flow (L/Sec)	Air Watts
	2000	· 🖵	\rightarrow					-	— Flo	N	_		_	-	- 50	Ī	48.0	8.0	932	18225	119	47.8	55
														•									

Orifice	Amps	Watts	RPM	Vac	Flow	Air
(mm)		(In)		(mm H2O)	(L/Sec)	Watts
48.0	8.0	932	18225	119	47.8	55
40.0	8.1	939	18142	226	45.9	102
30.0	8.2	949	18045	534	40.0	209
23.0	8.0	928	18308	929	31.2	282
19.0	7.6	886	18757	1201	24.2	285
16.0	7.2	839	19402	1396	18.6	253
13.0	6.7	781	20196	1590	13.1	203
10.0	6.1	724	21082	1768	8.2	141
6.5	5.6	663	22177	1972	3.7	71
0.0	5.1	613	23134	2281	0.0	0

Note: Metric performance data is calculated from the ASTM data above.

* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations.


Test Specs:	120 volts	Minimum Sealed Vacuum:	80.0"	ORIFICE:	7/8 "	Minimum Vacuum:	35.0"	Maximum Watts:	1050
-------------	-----------	------------------------	-------	----------	-------	-----------------	-------	----------------	------

PRODUCT BULLETIN

DIMENSIONS

NOTES

NUTES: 1. LEADS: 18GA STRANDED. LEAD COLORS: ONE BLACK AND ONE WHITE, COLORS DO NOT NEED TO BE ORIENTED. 2. GROUNDING OR EARTHING PROVISIONS: USE HOLES AS INDICATED FOR GROUNDING OR EARTHING. REFER TO APPROPRIATE LISTING OR REGULATORY AGENCY FOR PROPER METHOD OF GROUNDING OR EARTHING.

IMPORTANT NOTE: Pictorial and dimensional data are subject to change without notice. Contact factory for current revision levels.

WARNING When using AMETEK Lamb Electric bypass motors in machines that come in contact with foam, liquid (including water), or other foreign substances, the machine must be designed and constructed to prevent those substances from reaching the fan system, motor housing, and electrical components. Lamb Electric vacuum motors other than hazardous duty models should not be applied in machines that come in contact with dry chemicals or other volatile materials. Failure to observe these precautions could cause flashing (depending on volatility) or electrical shock which could result in property damage and severe bodily injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Issued: September, 2004